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2 Abstract
The determination of the permeability of low porous media like the micro and nano porous membrane or ultra-tight shale-
gas reservoir is still a challenge up to now. The low porous membranes find a large application in medicine, biotechnology
for separation and filtration. Gas permeability is an important parameter to understand the transport characteristics of the
porous media. This characteristic can be obtained from the mass or volume flow rate through a media. For low permeability
the transient techniques, "pulse-decay" or "draw-down" techniques, see [1], are suitable to determine low permeabilities. By
using these techniques some authors underlined that it is not necessary to measure the mass flow rate because the permeability
can be calculated from the changes of pressure in time. The main objective of the present work is to develop the transient
(unsteady) method to measure the pressure evolution in time in high and low pressure tanks due to the gas flow through a
porous membrane. This experimental methodology, based on the constant volume technique, was initially developed for the
isothermal and non-isothermal measurements of the mass flow rate through the micro channels [2]. It is shown that the gas
permeability can easily be obtained directly from the pressure evolution in time without calculation of the mass flow rate.

2.1 Experimental methodology
The experimental setup is a high vacuum system capable of measuring 5 decades of pressure ranging from 1, 3 Pa up to 133
kPa Fig.1. The reservoirs are connected only by a sample of micro porous ceramic membrane fixed with vacuum epoxy. This
membrane sample has a cylindrical shape with radius R = 475 µm and length L = 2.0 mm.

3 Permeability
When an initial pressure drop is induced in one of the reservoirs, by shortly connecting the one of the reservoirs to the pump.
It can be shown, that for the pressure evolution can be suitable fitted using and exponential decay model

p(t) = pf + (p0 − pf) exp (−t/τ) , (1)
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Figure 1: Schematic of the experimental setup.

where τ is the relaxations time of a gas and the only fitting parameter of the model. p0,pf are the initial and final pressure
respectively. When the pressure evultion is determined, the mass flow rate can be calculated using the constant volume
technique, previously used for the measurements of the mass flow rate through the micro channels [2]. Then, using the mass
flow rate expression and the classical Darcy law, we can express the permeability as

K =
V

τ

µL

pmS
, (2)

where V is volume, µ viscosity, L and S are the width and surface of the porous membrane, pm the mean pressure. Therefore,
when the relaxation time is obtained from the fitting of the pressure evolution, the permeability coefficient can be easily
be determined using Eq.(2) as a function of gas mean pressure, see left Fig.2. We can observe the typical behavior of the
permeability: it decreases linearly with the mean pressure increases demonstrating the well-known Klinkenberg effect. The
influence of the gas nature is visible on left Fig.2, the permeability for Neon is higher compared to other gases. However, if
we plot the permeability as a function of inverse gas mean free path all, gases are located on the same curve, see right Fig.2 .
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Figure 2: Membrane permeability.
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