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Abstract
Despite of the several decades of researches regarding evaporation and condensation phenomena on surfaces, these phe-
nomena are not yet well understood [1]. The continuum mechanics equations, the Navier-Stokes (NS) equations, widely
used in engineering areas, are not always valid to describe correctly the non-equilibrium phenomena such as evaporation
and condensation in a gaseous media. These equations are valid only when the Knudsen number, Kn, defined as the ratio
between the molecular mean free path and the characteristic dimension of the gaseous system, is small enough, i.e. the
gas rarefaction degree is sufficiently small to consider a gaseous medium as a continuum. But even when the Knudsen
number is small, a thin layer (the Knudsen layer) exists on the interface between the liquid and gaseous phases. Therefore,
the implementation of the methods based on the kinetic theory of gases [2, 4] are indispensable to describe correctly the
phenomena occurring during evaporation and condensation.

The present work aims the numerical simulation of the condensation and evaporation phenomena at the surface of a
spherical droplet of the condensed vapour by using the numerical solution of the linearized kinetic equation proposed by
Shakhov [5].

We consider a gas around a spherical droplet, of radius R0, of its condensed phase at constant temperature Tw. Far
from the droplet the gas is at an equilibrium state (pressure p0 and temperature T0). We investigate the steady evaporation
from (or condensation onto) the spherical condensed phase under the following assumptions:

(i) The gas flow around the sphere is described by the model proposed by Shakhov [5] for the linearized Boltzmann
equation.

(ii) The fraction α of the molecules emitted from the particle surface is evaporated in an equilibrium manner while the
fraction (1 − α) is reflected from the surface in accordance with a diffusive law with total temperature accommo-
dation. The velocities of the reflected molecules are distributed according to the Maxwellian law.

(iii) The ratios νs = |ns − n0|/n0 and τs = |Ts − T0|/T0 are assumed to be small enough to allow the linearization of
the kinetic equation and of the boundary conditions around the equilibrium state at rest, far from the sphere, with
the number density n0 and temperature T0. ns and Ts are the saturated number density and temperature of the
condensed phase.
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The linearized kinetic equation with the boundary conditions is solved by the Discrete Velocity Method (DVM). The
bulk velocity of the gas evaporated from the surface can be found as following: 2ur = Gννs +Gττs, where Gν and Gτ

are the quantities related to the bulk velocity of the gas for the density deviation and temperature deviation, respectively.
These quantities depend only on Kn and the evaporation-condensation coefficient α. The numerical results for the Gν

and Gτ coefficients are presented in Tables 1 and 2 for several values of the rarefaction parameter δ. The comparison with
the results presented in Refs. [3, 6] shows a good agreement.

Table 1: The values of Gυ depending on the rarefaction parameter δ and evaporation coefficient α

α
δ 0.1 0.2 0.4 0.5 0.7 0.8 1.0
0.01 0.0562 0.112 0.225 0.281 0.394 0.450 0.563
0.05 0.0562 0.113 0.226 0.283 0.397 0.454 0.569
0.1 0.0563 0.113 0.227 0.284 0.400 0.458 0.576
0.3 0.0565 0.114 0.230 0.290 0.411 0.473 0.600
0.5 0.0567 0.114 0.233 0.295 0.421 0.486 0.620
0.7 0.0568 0.115 0.236 0.298 0.429 0.496 0.637
1.0 0.0570 0.116 0.239 0.303 0.439 0.510 0.659
2.0 0.0573 0.117 0.245 0.314 0.462 0.541 0.713

Table 2: The values of Gτ depending on the rarefaction parameter δ and evaporation coefficient α

α
δ 0.1 0.2 0.4 0.5 0.7 0.8 1.0
0.01 0.0282 0.0563 0.113 0.141 0.197 0.226 0.282
0.05 0.0284 0.0569 0.114 0.143 0.200 0.229 0.287
0.1 0.0287 0.0576 0.116 0.145 0.204 0.233 0.293
0.3 0.0300 0.0605 0.122 0.154 0.219 0.251 0.318
0.5 0.0312 0.0631 0.129 0.163 0.233 0.269 0.344
0.7 0.0323 0.0655 0.135 0.171 0.246 0.286 0.368
1.0 0.0337 0.0686 0.143 0.182 0.265 0.309 0.403
2.0 0.0370 0.0761 0.162 0.209 0.313 0.371 0.499
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